Genetic assignment tests reveal dispersal of white-tailed deer: implications for chronic wasting disease

نویسندگان

  • MICHELLE L. GREEN
  • MARY BETH MANJEROVIC
  • NOHRA MATEUS-PINILLA
  • JAN NOVAKOFSKI
چکیده

Investigating sources of infection for new disease cases is critical to effective disease management. Chronic wasting disease (CWD) was first detected among white-tailed deer (Odocoileus virginianus) in Illinois in 2002. Although CWD was focused in northern Illinois, 4 infected deer were sampled in 2011 from locations greater than 100 km south of the disease focus. We used assignment tests (GENECLASS2 and ONCOR) to determine a likely genetic source location for infected deer. Our baseline data set consisted of 310 deer sampled from 10 locations. From the baseline data set, we determined the most likely genetic source location of 15 CWD-positive and 15 CWD-negative deer. A total of 17–20% back-assigned to their sample location as their most likely genetic source location and the remainder of the animals cross-assigned to another location. The average distance between locations was 41.4 km for GENECLASS2 and 43.4 km for ONCOR (range 0.0–90.8 km). Distances between source and sampling locations were similar for positive and negative animals. Distances for males were greater than those for females using ONCOR, but there was no difference in distance based on age. Because there are few barriers to gene flow for white-tailed deer, managers should reduce movement of deer in CWD-infected areas in an effort to reduce direct and indirect transmission of CWD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broad and fine-scale genetic analysis of white-tailed deer populations: estimating the relative risk of chronic wasting disease spread

Chronic wasting disease is a transmissible spongiform encephalopathy of cervids, similar to sheep scrapie that has only recently been detected in wild populations of white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus hemionus) in western Canada. Relatively little is known about local transmission dynamics of the disease or the potential for long-distance spread. We an...

متن کامل

Molecular genealogy tools for white-tailed deer with chronic wasting disease.

Molecular genetic data provide powerful tools for genealogy reconstruction to reveal mechanisms underlying disease ecology. White-tailed deer (Odocoileus virginianus) congregate in matriarchal groups; kin-related close social spacing may be a factor in the spread of infectious diseases. Spread of chronic wasting disease (CWD), a prion disorder of deer and their cervid relatives, is presumed to ...

متن کامل

Diversity and distribution of white-tailed deer mtDNA lineages in chronic wasting disease (CWD) outbreak areas in southern Wisconsin, USA.

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting North American cervids. Because it is uniformly fatal, the disease is a major concern in the management of white-tailed deer populations. Management programs to control CWD require improved knowledge of deer interaction, movement, and population connectivity that could influence disease transmission and spread....

متن کامل

Landscape genetics and the spatial distribution of chronic wasting disease.

Predicting the spread of wildlife disease is critical for identifying populations at risk, targeting surveillance and designing proactive management programmes. We used a landscape genetics approach to identify landscape features that influenced gene flow and the distribution of chronic wasting disease (CWD) in Wisconsin white-tailed deer. CWD prevalence was negatively correlated with genetic d...

متن کامل

The walk is never random: subtle landscape effects shape gene flow in a continuous white-tailed deer population in the Midwestern United States.

One of the pervasive challenges in landscape genetics is detecting gene flow patterns within continuous populations of highly mobile wildlife. Understanding population genetic structure within a continuous population can give insights into social structure, movement across the landscape and contact between populations, which influence ecological interactions, reproductive dynamics or pathogen t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014